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ABSTRACT 

The research presented here involves the application of mesoporous silica 

nanoparticles in heterogeneous catalysis and biomedical study. 

Since the discovery of mesoporous silica nanoparticle (MSN), it has been studied as 

solid catalyst support. We studied the catalytic activity of CO hydrogenation and the 

selectivity to C2 oxygenates by encapsulating monodispersed rhodium (Rh) nanoparticles 

during the synthesis of MSN in situ, and further modified by manganese oxide. The catalysts 

showed a higher reactivity in CO hydrogenation and a better selectivity to the desired product 

ethanol. 

Structure directing agent plays a big role in mesophase structure, as well as affecting 

the distribution of functional group during the co-condensation. We developed an anionic 

surfactant (PME), by which we increased the interaction of the calcium site with the head 

group of surfactant, synthesizing a mesoporous calcium silicate material. The catalytic 

activity in transesterification reaction is better than the cationic surfactant (CTAB) templated 

material.  

Also, previous studies in our group showed the potential of MSN, which were 

biocompatible as drug delivery vehicles. We exploited the biological application of MSN by 

chemically bonding ceria nanoparticles as the caps for stimuli responsive control release 

system. Furthermore, it showed pH dependent antioxidant properties when mixed with H2O2, 

and better endocytosis efficiency and protection to normal cells than naked ceria 

nanoparticles.  

 



www.manaraa.com

 1 

 

CHAPTER 1.  GENERAL INTRODUCTION 

Organization 

This thesis is organized in five chapters. The first chapter is general introduction to 

MSN and its application in heterogeneous catalysis and biology. Chapter 2 and 3 are journal 

article. In Chapter 2, Yulin Huang is the primary author. My contribution is mainly on the 

reactivity test on CO hydrogenation of a series of catalysts, comparing the CO conversion 

and C2+ selectivity to those commercial available catalysts, catalysts by impregnation 

method, with our in-situ encapsulation synthesized MSNRhNPs. This work is prepared to 

submit to Nano-Letters. Chapter 3 is one section from an accepted paper by Topics in 

Catalysis. The paper is the result of collaborate work with 3 other researchers. In particular, I 

investigated the synthesis of anionic surfactant templated mesoporous calcium silicate and 

tested its catalytic performance in transesterification reaction, by using the surfactant 

developed by Chih-Hsiang Tsai. While, the calcium silicate synthesized under cationic 

surfactant and without surfactant was studied by Tse-Ming Hsin and Senniang Chen, which I 

didn’t included in my thesis. Chapter 4 is about cerium oxide nanoparticle, its application in 

biotechnology. I am the primary author, while Yannan contributed to cell experiments and 

images taken. Chapter 5 finishes the thesis with general conclusions. 

Overview of Mesoporous Silica Materials 

Since the discovery of the first ordered mesoporous materials (IUPAC: 2 nm < 

particle diameter < 50 nm), known as the M41S-type of silica mesophases, by researchers in 

Mobil Research and Development Corporation in the early 1990s,1 the field has been 
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extensively investigated. By changing the synthesis conditions, it is possible to alter the order 

of the material and therefore create new types of structures.  The three most important are: 

MCM-41, which is hexagonal,2 cubic MCM-48 3 and lamellar MCM-50. 4 

MCM-41 is the most widely studied M41S material, which is also our interest in this 

thesis. MCM-41 has high surface areas of up to 1200 m2/g and large pore volumes. The pores 

are unidirectional and pore size distributions are narrow (see Figure 1). They can be tailed to 

diameters between 1.5 and 20 nm, while, the thickness of pore walls is between 1 and 1.5 

nm.5 A typical X-ray diffraction pattern of MCM-41 shows the hexagonal symmetry of the 

pore ordering (space group: p6m), which contains four main reflection peaks (d100, d110, d200 

and d210), while no reflections can be observed at higher degrees because of the amorphous 

structure at atomic level. 

A large diversity of synthetic approach is applied to synthesis of mesoporous silica 

materials.  Basically, surfactant type, the specific synthesis mechanism and the interaction of 

the silica source with the template molecules determine the final material’s meso-structure. 

For example, MCM-41 materials are made by a S+ I- direct interaction between a positively 

charged surfactant and a negatively charged silica source in a basic condition.5 A general 

synthetic route can be described as dissolution of template solution in a certain solvent, 

adjusting pH, temperature, and other additives, followed by addition of the silica source 

(tetraethyl orthosilicate, metasilicate, fumed silica etc.). Then stirring for a period at a certain 

temperature allows hydrolysis and condensation of the inorganic species. In  next step, the 

products will be recovered, washed and dried. Finally, the template needs to be removed by 

calcinations or extraction methods. 
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The synthetic recipe of MCM-41 in our group was developed by our previous 

members based on reported literature.6-8 In a typical synthesis, a silica source tetraethyl 

orthosilicate was added to an alkaline solution of CTAB (cetyl trimethyl ammonium bromide) 

as the surfactant at 353K with vigorous stirring. After stirring for 2 h, the suspension was 

filtered and washed by water and an organic solvent. To remove the surfactant, the as-made 

material either was calcined at 823 K or refluxed with hydrogen chloride in methanol at 

333K.  

The key parameters for the mesoporous material synthesis are the hydrogel 

composition, the type and length of the surfactant, the pH, the temperature and time. In 

particular, packing factor or g factor, describes the hydrophobic-hydrophilic balance between 

the alkyl chain and the head group, thus the tendency of the alkyl chain to minimize its 

contact with water and maximize its organic-interaction. 9 

The packing factor (g) can be expressed as g = V/ a0l, where V represents the total 

volume of the surfactant chains plus any additive between the chains; a0 is the effective head 

group area and l is the kinetic surfactant tail length. As the value of g increases above a 

critical value, mesophase transitions occur (see Figure 2).  When the polar head group has a 

large surface area, spherical structures are obtained. On the other hand, lamellar or rod 

packing occurs when the head groups are packed tightly with large aggregation numbers.  

Functionalization and Application of Mesoporous Silica Materials 

In order to take advantage of MCM-41 materials in the application of heterogeneous 

catalysis and drug delivery, we need to modify the surface of the material by functionalizing 

with metal ions or metallic nanoparticles or organic group. These functionalities either serve 
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as catalytically active sites, or as the linker to other nanoparticles or macromolecules, which 

later “cap” the pores of MCM-41.  

Basically, there are two methods of functonaliztion: co-condensation and grafting. 

Co-condensation involves the in-situ condensation of the organosilane with TEOS, which 

results in a homogenous distribution of the organic group on the surface of the silica 

material; Grafting involves the post-synthesis of organosilane with the silanol group on the 

non-functional MCM-41 material at high temperature. Since it’s a solid-liquid reaction, the 

functionalization is limited by the accessibility of the silanol group, and the distribution is not 

homogenous compared to the one-port co-condensation method. However, due to different 

applications, properties of the reactant and characterization requirement, we employed both 

of the  methods in our following research.  

One application of MCM-41 material is as the heterogeneous catalyst support, due to 

the relatively large pores, which facilitates mass transfer, and the very high surface area, 

which allows a high concentration of active sites per mass of material.   

In order to modify the nature of the framework, it is vitally important to incorporate 

heteroatoms into the inert framework or walls of mesoporous materials. It is generally 

observed that the degree of metal incorporation as well as coordination of metal sites in the 

mesopore structure is dependent on the synthesis conditions, gel’s pH, temperature, time and 

the nature of metal precursor used. 10 

Highly dispersed metal nanoparticles play a significant role in many catalytic 

reactions.11 However, for high temperatures process, surface atoms are highly mobile, 

leading to the interparticle diffusion and, subsequent growth of metal particles to bulk size.12 

Thus, researchers use inert inorganic supports with rigid frameworks and high surface areas 
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to get higher dispersion of metal-nanoparticle catalysts. For the fabrication of monodisperse 

metal nanoparticles within the channels of mesoporous materials, conventional methods such 

as incipient wetness is evidently not a good choice, since metal nanoparticles with bimodal 

size distribution would be obtained on both internal and external surfaces of mesoporous 

channels. Selective encapsulation of monodisperse metal nanoparticles inside the channels of 

mesoporous silica is highly desirable. Currently, numerous strategies have been reported for 

the encapsulation of metal nanocomposites, which include: in situ encapsulation,13,14 

organometallic methodologies15, 16 and surface functionalization schemes.17 

In situ encapsulation method of monodisperse metal nanoparticles is typically based 

on pre-synthesis of nanoparticles with narrow size distribution (see Figure 3). Due to the 

higher stability of the pre-synthesized nanoparticles as compared to molecular metal clusters, 

such nanoparticles can be dispersed in the synthesis mixtures of mesoporous materials 

(generally, strong acidic or basic condition). Upon precipitation of the inorganic species, 

these metal nanoparticles are expected to be incorporated into the framework of mesoporous 

materials.13 The metallic nanoparticles could keep their uniformity even after high 

temperature treatment, and show good catalytic activity, due to confinement of the silica 

materials.  In early studies, Schuth et al. found the 2-nm Pt nanoparticles encapsulated in 

MCM-41 type materials showed very good performance in CO oxidation.18 Johnson et al. 

found that monodispersed nanoclusters confined in MCM-41 materials had an improved 

enatioselectivity in hydrogenation reaction compared to the homogenous catalysts.19 Fukuoka 

also reported that highly dispersed Pt nanoparticles in mesoporous FMS-16 materials were 

very effective for CO conversion.20 All the above results indicate that confining of metallic-

bimetallic nanoparticles in the mesoporous silica matrix is applicable and achievable, which 
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give us a hint to design a better catalyst for our following research: ethanol production from 

synthetic gas. 

In our method, we introduced polyvinylpyrrolidone (PVP) as the stabilizer, and 

successfully synthesized 2nm-sized Rh nanoparticles (NPs) in solution environment. Later 

we applied the in-situ encapsulation method, to make the Rh NPs loaded on MCM-41 type 

material. Rh based materials were well known for their excellent performance in CO 

hydrogenation. Our catalysts showed not only higher reactivity than the previously reported 

Rh catalysts, but also better selectivity to the desired product ethanol. The reactivity of 

MSNRhNPs in CO hydrogenation and especially the selectivity to ethanol were further 

improved after it was modified by manganese oxide. We will discuss the details in the 

following chapter. 

Previously, our group developed a new cooperative catalytic system comprised of a 

series of bifunctional mesoporous mixed oxide materials, which contain both Lewis acidic 

and basic sites for the synthesis of biodiesel from various free fatty acids (FFA)-containing 

oil feed stocks.21 These materials were synthesized by cationic surfactant (CTAB) by 

introducing silicon precursor (TEOS) and calcium precursor (CaO) at the same time under 

basic condition in elevated temperature.  Even though the mesoporous calcium silicate 

(MCS) showed the ability to catalyze both esterification and transesterification reaction with 

good recyclability, the catalytic efficiency is still need to be improved. By employing a new 

synthetic strategy, using anionic surfactant as structure directing agent instead of cationic 

surfactant, we are trying to increase the possibility of contact between the active site (calcium 

oxide) with the reactant. 
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Anionic surfactants that can self-assemble into micelles in water have been used as 

structure-directing templates for the synthesis of mesoporous silica materials.22 Recently, a 

series of Anionic-surfactant-templated Mesoporous Silica (AMS) have been synthesized, by 

using 3-aminopropyltriethoxysilane (APS) as a co-structure directing agent (CSDA), which 

can interact with the anionic head group of the surfactant (SDA). Generally, the formation 

undergoes “S-N+~I-” pathway (S-: anionic surfactant, N+: cationic amino group and I-: 

inorganic species). Removal of the anionic surfactant by extraction led to the functionalized 

AMS containing amino groups on the silica surface.23, 24-29   

According to Tatsumi et al.,30 the amino groups derived from APS estimated by CHN 

elemental analysis and argentometric titration, were on the surfaces; however the MCM-41 

type materials synthesized with a cationic surfactant by direct co-condensation had a random 

distribution of the amino groups, shown in Figure 3. Amino-functionalized AMS via the 

anionic surfactant templating route also showed a higher Co2+ cations adsorption capacity 

than amino-functionalized MCM-41. The difference of the amino functionality distribution 

inspires us to design a novel solid base catalyst in biodiesel production. In our study, 

positively charged calcium ions were introduced to interact with the phosphate groups of the 

anionic PME surfactant molecules. Under basic conditions, hydrolyzed TEOS easily 

coordinates with the calcium/surfactant in an S- M+ I- (S-: anionic surfactant, M+: metal cation 

and I-: inorganic species) complex system and forms ordered structure.  After the removal of 

surfactants, the calcium sites would be exposed to the surface and react with methanol and 

feedstock effectively. We will further discuss the catalytic system in Chapter 3.  

Among the variety of inorganic materials in biomedical applications, mesoporous 

silica nanoparticles have many attractive features, such as large surface area, high pore 
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volume, ordered pore structures, which can be used in storage and delivery of small 

molecules. After tuning the pore size, larger molecules such as protein can also be loaded.31 

32  In the recent years, our group reported a series results in design of functional mesoporous 

silica materials for stimuli-responsive controlled-release delivery of pharmaceutical drugs, 

genes, and other chemicals.32-42 

CdS nanoparticles were chemically linked on MSN surface via a cleavable disulfide 

bond, blocking the mesopores of MSN (see Figure 4), which prevented the leaching of the 

loaded guest molecules.33 The release of guest molecules was triggered by exposing the 

capped MSNs to chemical stimulation that could cleave the disulfide linker, and thus remove 

the nanoparticle caps and release the pore-entrapped guest molecules. 

Cerium oxide nanoparticles have attracted attention in biomedical application 

recently.43-48 Surface oxygen vacancies, the intrinsic property of cerium oxide, allows it to 

have two oxidation state: +3 and +4, and can flip-flop between the two during redox 

reaction.49 It has been reported that ceria nanoparticles could inhibit the increase in the 

intracellular concentration of reactive oxygen intermediates of rat retina cell, prevent 

photoreceptor cell from light-induced degeneration in vivo,44 and even mimic the catalytic 

activity of superoxide dismutase.50 As reported, these activities directly correlate with the 

ratio of Ce (+3) to Ce (+4). A higher concentration of Ce (+3) would result in a better activity 

in superoxide scavenging process.46 According to the literature, when particle size decreased, 

it would result in an increase in surface area to volume ratio, giving rise to a larger surface 

oxygen vacancy.51 Experiment shows that ceria with particle size around 5 nm is able to 

regenerate and acts as catalysts.44 At the same time, other researchers found cytotoxicity and 

oxidative stress induced by cerium oxide with larger size (such as 20 nm) in cultured BEAS-
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2B cells 52 and human lung cancer cells.53 Interestingly, researchers also found a selective 

protection of nanoceria to normal cells when treated with radiation or H2O2, but not to tumor 

cells43, 47, as shown in Figure 7. The different protection may come from the intra- and 

extracellular pH differences presented in normal versus tumors tissue due to metabolic 

activity. 

In order to overcome CdS nanoparticle induced cytotoxicity, as well as applying a 

new function to the release system, we studied ceria nanoparticles (CNPs) as the mesopore 

caps acting as an antioxidant to scavenge reactive oxygen species induced by toxic drug. This 

work will be included in Chapter 5. 

The functionalized mesoporous silica materials developed in our lab have been 

demonstrated for a variety of applications in drug controlled-release, catalysis and 

biomedicine. In order to fully take advantage of the unique properties of MSN, further 

investigation is highly demanded, such as tuning of pore size and surface functionalization. It 

is of our interest for further applications: a smart vehicle, selectively absorbing valuable 

components from economically-based algae.  
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Figure 1. TEM image of the honeycomb structure of MCM-41. 



www.manaraa.com

 16 

 

 

 

Figure 2. Schematic representation of values of g factor.10 
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Figure 3. Illustration of the location of the aminopropyl group in amino-functionalized 

mesoporous silica synthesized via (a) the cationic templating and (b) the anionic templating 

routes.32 

(a) 

(b) 



www.manaraa.com

 18 

 

 

 

 

Figure 4. Schematic representation of the solid nanoparticle-capped MSN based 

drug/neurotransmitter delivery system. The controlled release mechanism of the system is 

based on chemical reduction of the disulfide linkage between the caps and MSN.35 
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Abstract 

Well-defined and monodispersed rhodium (Rh) nanoparticles as small as ~2 nm were 

synthesized with polyvinylpyrrolidone (PVP) polymer in ethanol. And the as-made PVP-

stabilized Rh nanoparticles were dispersed and encapsulated in mesoporous silica 

nanoparticles in situ during the synthesis of this high-surface-area mesoporous silica 

nanoparticle (MSN) support. Catalytic performance of the MSN-supported Rh nanoparticles 

(MSNRhNPs) was modified by manganese oxides and studied with CO hydrogenation.  

MSNRhNPs were active for the CO hydrogenation and the selectivity to C2 oxygenates 

reached the highest point without formation of by-product methanol after the Rh 

nanoparticles were modified by manganese oxide during the formation of MSN. 
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Introduction 

It is well known that higher alcohols synthesized from natural gas, coal, or biomass 

can be used as a renewable energy alternative, such as additives to gasoline and an easily 

transportable source of hydrogen.1-4 Because ethanol could not only decrease the dependence 

on imported cruel oil but also would have a positive environmental impact, synthesis of 

ethanol selectively from syngas (CO and H2), which can be made from coal or biomass 

pyrolysis, has been a topic of growing interesting from both industrial and academic points of 

views. In the catalytic synthesis of ethanol since the 1980s,5 rhodium-based catalysts have 

been known for decades to be the most selective catalysts for the synthesis of C2+ 

oxygenates, including ethanol, acetaldehyde and acetic acid, due to the unique CO adsorption 

behavior on Rh surface,6,7   although some other transition metal catalysts were reported.2,8-15 

Most of the attention on Rh-based catalysts for ethanol synthesis from syngas was and is still 

on the influences of catalyst precursors,16-21 supports6,22-28 and promoters or 

additives16,21,22,24,29-43 on the activity and selectivity. And most of these Rh-based 

heterogeneous catalysts were made from impregnation of rhodium salt solution which then 

was followed by calcinations of the as-made solid at high temperature and reduction of 

rhodium oxides to metallic rhodium particles by hydrogen gas.44-46 Usually rhodium particles 

from this process, including impregnation, calcination and reduction, have a very broad size 

distribution and vary a lot from batch to batch, because the control of particle size 

distribution especially on support surface is still very challenging especially at the required 

high temperature.13 And that might be the reason there are only few studies on the size 

controlling of Rh particles in CO hydrogenation.47 But, for CO hydrogenation or any other 

reactions catalyzed by immobilized Rh catalysts, Rh particle size controlling should be a very 
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important to adjust the percentage of surface metal atoms that are the only accessible to the 

reactants.48,49 Therefore downsizing Rh particles, especially to nanometer scale, should be an 

efficient strategy to increase the reactivity and probably improve the selectivity, due to the 

dramatically increased percentage of surface metal atoms. 

For downsizing metal catalyst particle, colloidal chemistry could be adopted to 

synthesize mono-dispersed metal nanoparticle with well-defined particle size in solution. 

After metal nanoparticle was made in colloidal solution, nanoparticle’s dispersion on porous 

supports by impregnation is required. Mesoporous silica structures have been regarded as 

ideal catalyst supports due to their high surface area, tunable pore size and highly ordered 

alignment since its discovery at the beginning of 1990s.27,50-52 However, in this methods, in a 

addition to the difficulty of controlling the homogeneous distribution of metal particles on 

porous supports surface, rhodium particle growing is still challenging for both chemists and 

chemical engineer, due to 1) the weak interaction (or physical adsorption) between metal 

nanoparticle and support surface and 2) the inevitable growth or sintering of catalyst 

particles.  

Here we reported the successful synthesis of ~2.0 nm Rh particles (RhNPs) in 

alcoholic solution using a polymer, polyvinylpyrrolidone (PVP), as a nanoparticle stabilizer 

and subsequent encapsulate the as-made RhNPs in the framework of mesoporous silica 

nanoparticle (MSN) during in situ of the forming of MSN (Scheme 2-1). Comparing with 

commonly used MSN-supported Rh catalyst from incipient wetness impregnation of aqueous 

RhCl3 solution (MSNRh), RhNPs encapsulated in MSN framework (MSNRhNPs) not only 

have a higher reactivity in CO hydrogenation but also have better selectivity to the desired 
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product ethanol. The reactivity of MSNRhNPs in CO hydrogenation and especially the 

selectivity to ethanol were further improved after it was modified by manganese oxide. 

Allen, B. S. (1984), Bruner, J. (1960) and Cox, S. R. (1974) did the initial work in 

this area.  But in Bruner’s work [Bruner, J. (1960)] the definitive model is seen. 

Results and Discussions 

Synthesis of PVP-stabilized Rh Nanoparticles and Mesoporous Silica 

Nanoparticle Framework Encapsulated Rh Nanoparticles. Metal nanoparticles less than 

10 nm that were well defined and monodispersed with controlled shape have been 

synthesized by colloid chemistry in recent years.53-55 For the synthesis of Rh nanoparticles 

less than 2.0 nm, there are a few reported methods.48,49,56,57 Because PVP is a water soluble 

polymer, PVP stabilized rhodium nanoparticles can be dispersed homogeneously in water 

which can be homogeneously distributed in aqueous solution for MSN synthesis. PVP-

stabilized RhNPs were synthesized as reported with minor modifications.48,49  PVP (Typical 

Mw = 29,000) was purchased from Sigma-Aldrich as the nanoparticle stabilizer. A 7.9 

mmol/L PVP solution was prepared by dissolving the polymer into anhydrate ethanol.  The 

PVP ethanolic solution was mixed with 7.1 mmol/L aqueous RhCl3 (Rh, 38-40% from Strem 

Chemicals, Inc.) solution at room temperature, where the mole ratio between PVP and Rh3+ 

was 10.0. After reduction of rhodium in ethanol, solvent was evaporated by rotavap at 40 oC 

and the as-made Rh nanoparticles (RhNPs) were characterized by transmission electronic 

miscroscopy (TEM). TEM image (Figure 2-1a) shows that the Rh particles are well-defined 

and mono-dispersed spheres with ~2.0 nm in diameter and HRTEM image (Figure 2-1b) 
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combining with diffraction pattern indicates that these tiny RhNPs have the crystalline 

structures.  

The as-made RhNPs (480.0 mg, including 40.0 mg Rh) were re-dissolved into water 

(10.0 mL, 0.6 mol) and mixed with water (470 mL, 26.1 mol), cetyltrimethylammonium 

bromide (CTAB, 2.0 g, 5.5 mmol), NaOH (7.0 mL x 2.0 mol/L, 14.0 mmol) at room 

temperature prior to the hydrolysis of tetraethoxyl orthosilicate (TEOS, 10.0 mL, 44.8 mmol) 

at 80 oC for 2.0 hours. After the hydrolysis, the grey solid was filtrated and dried under 

vacuum overnight. The catalytic material MSNRhNPs was made and ready for catalyst 

characterization, analysis and catalytic tests after the removal of template CTAB and PVP at 

350 oC in air for 5 hours. Before reaction, MSNRhNPs was reduced in continuous H2 flow 

(10 mL/min) at 310 oC with 450 psi pressure for at least 2 h. N2 adsorption and desorption 

isotherms show that MSNRhNPs still had a typical mesoporous structure of MSN with a 

narrow pore size distribution as diameter was around 2.4 nm, surface area at 947 m2/g and 

pore volume at 1.0 mL. X-ray powder diffraction indicated that MSNRhNPs were still full of 

highly ordered parallel channels, which could be seen clearly from Transmission Electron 

Microscopy (TEM) images (Figure 2-2a). In TEM image, a lot of tiny black spots could be 

seen in addition to the highly ordered parallel channels and these were RhNPs, which was 

further confirmed by Scanning Transmission Electron Microscopy (STEM) image in Figure 

2-2b. From STEM images of MSNRhNPs, it is clear that 1) RhNPs were well-distributed 

over the mesoporous silica nanoparticle and 2) the supported RhNPs was almost the same 

size, around 2.0 nm in diameter, as unsupported RhNPs (as shown in Figure 2-1), although it 

is very difficult to accurately measure the size of small nanoparticles on mesoporous supports 

because TEM images taken from nanoparticles supported on mesoporous supports often 
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suffer from low contrast due to the decrease of the supporting material’s electron 

transparency, and this behavior is magnified as particle size decreases, and nanoparticles on 

mesoporous silica are also in different focal planes during TEM imaging. Energy Dispersive 

X-ray (EDX) was used to determine the loading of Rh on MSNRhNPs and 1.6 wt% of Rh in 

this material was obtained basing on the atomic ratio between Si and Rh. 

Synthesis of Rh-MSN and Mnn+ Modified Rh Catalysts through Impregnation 

Methods. MSNRhNPs’ counterparts, Rh-MSN with 1.6 wt% of Rh loading, from traditional 

incipient wet-chemistry, impregnation methods, were synthesized (see supporting 

information) in order to compare their catalytic properties in CO hydrogenation reactions. 

For Rh catalysts in CO hydrogenation, many promoters were used to improve selectivity to 

C2 (including ethanol and acetaldehyde) or C2+ oxygenates,2-4 and among these reported 

promoters, MnxOy was a very good candidate.34-36,58,59 (Here, the oxidation states of Mn 

species usually could not be accurate and it will be addressed in the flowing studies in this 

paper.) Therefore, in order to improve the selectivities of MSNRhNPs and Rh-MSN to C2 

oxygnates, Mnn+ modified MSNRhNPs (MSNRhNPs-Mn) and Mnn+ modified Rh-MSN (Rh-

Mn-MSN) were both synthesized by impregnation methods using Mn(NO3)2. 

Modification of RhNPs by Mnn+ during in situ formation of MSN. It’s a well-

known challenge to control the distribution of metal ions on solid surface. Therefore, many 

catalysts, even with the same chemical composition, have different catalytic performances if 

they are from different companies or different research groups. For the bimetallic or 

multimetallic catalysts, the situation was even worse due to the difficulty to adjust the 

interaction between these different metals. In catalyst MSNRhNPs, RhNPs were distributed 

homogeneously in MSN particles as we can see from Figure 2-2. However, during the Mnn+ 
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modification procedure, the distribution of Mnn+ and the interaction between RhNPs and 

Mnn+ are still out of control due to the innate disadvantage of impregnation method. In order 

to achieve a homogeneous distribution of Mnn+ around RhNPs and the interaction between 

RhNPs and Mnn+, we, for the first time, modify RhNPs by Mnn+ right during the formation of 

MSN as shown in Figure 1-2. 

Typically, the as-made RhNPs (480.0 mg, including 40.0 mg Rh) were re-dissolved 

into water (10.0 mL, 0.6 mol) and mixed with water (470 mL, 26.1 mol), CTAB (2.0 g, 5.5 

mmol), NaOH (7.0 mL x 2.0 mol/L, 14.0 mmol) at room temperature prior to the adding of 

Mn(NO3)2 • xH2O (104.7mg, including 20.0 mg Mn) and the hydrolysis of TEOS (10.0 mL, 

44.8 mmol) at 80 oC for 2.0 hours. After the hydrolysis of TEOS, the black solid was filtrated 

and dried under vacuum overnight. The catalytic material MSNRhNPsMn was made and 

ready for the catalyst characterization after the calcination at 350 oC in air for 5 hours. Before 

reaction, MSNRhNPsMn was also reduced in continuous H2 flow as other catalysts. N2 

adsorption and desorption isotherms, XRD show that MSNRhNPsMn still has the typical 

highly ordered MSN parallel channel structure with high surface area (SBET = 878 m2/g), very 

narrow pore size distribution (dBJH = 2.5 nm). TEM and STEM images (Figure 2-2) of 

MSNRhNPsMn show that RhNPs are distributed homogeneously through the whole structure 

of MSN and the particle size is still around 2.0 nm without change after modification with 

Mnn+. EDX was used to determine the loading of Rh and Mn on MSNRhNPsMn and 1.6 

wt% of Rh and 0.8 wt% of Mn in this material were found, which makes the ratio between 

Rh and Mn around 2.0. 

X-ray Photoelectron Spectroscopy (XPS) Study. XPS was used to characterize the 

oxidation states of Rh and Mn in our catalysts on a Perkin-Elmer PHI 5500 XPS 
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spectrometer with a position-sensitive detector, a hemispherical energy analyzer in an ion-

pumped chamber (evacuated to 2 x 10-9 Torr), and a Al Kα (BE = 1486.6 eV) X-ray source at 

300 W with 15 kV acceleration voltage. For all of our experiments, the binding energy of 

silicon was forced to be 104.5 eV which was used as an internal standard for other elements’ 

binding energy. Figure 3 shows the XPS results of RhNPs and MSNRhNPs. Before 

calcination (Figure 3a and 3b), the Rh 3d5/2 peak (~308 eV) could be fit by two peaks with 

bonding energies of 307.3 eV and 308.9 eV, corresponding to the metallic Rh (0) and the 

oxidized Rh (+3) respectively. As shown in Figure 2-3a, RhNPs was very stable in air at 

room temperature with 88 % of metallic Rh(0) and 12 % of oxidized Rh(+3). After being 

encapsulated in MSN, there is still 30 % of metallic Rh(0) as shown in Figure 2-3b. After 

calcinations in air at 350 oC for 5 h, from XPS spectroscopy, Si, Mn, Rh and O are the only 

four detectable elements in all of our catalysts reported here, which indicates that template 

CTAB and PVP were removed completely from MSNRhNPs surface. With calcination, Rh 

was oxidized almost completely to Rh2O3 (Figure 3c), which can be reduced back to metallic 

Rh(0) by H2 easily during the reaction(Figure 2-3d). So the XPS data might indicate that all 

of Rh atoms in RhNPs could be accessible to at least O2 and H2 and might be accessible to 

CO as well under our reaction conditions. In any XPS spectroscopy of Mnn+ modified 

catalysts, Mnn+ was found. However, the oxidation states of Mn species could not be solved 

because of its lower intensity and the relatively small difference between binding energies of 

Mn2+, Mn3+ and Mn4+, which decreases the reliability of fitting theoretically. Therefore, it is 

better to use Mnn+ instead of other Mn species with defined oxidation states here. 

Carbon Monoxide hydrogenation Catalyzed by Rh Catalysts. Here a laboratory 

scale flow and tubular reactor was used for the CO hydrogenation with low surface area SiC 
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as catalyst diluting reagent. Temperature was controlled by a Parr controller (4843) and two 

type-K thermocouples. Gas flows (CO and H2 were all from Praxair and UHP) were 

regulated by two calibrated mass flow system (Parr mass flow system with Brooks mass flow 

controllers). Before syngas was charged to the reactor, catalyst was reduced with 10 mL/min 

H2 flow at 450 psi and 632 K for two hours. Deionized water was charged into the condenser 

in order to dissolve most of alcohols from the reaction. Tail gas right after the tubular reactor 

from the reaction was analyzed on an on-line GC (Varian 3900 with CP-Molsieve 5A (10 m 

x 0.32 mm x 10 µm) and CP-PoraBOND Q (50 m x 0.53 mm x 10 µm)), and a thermal 

conductivity detector (TCD)) with 5 wt% Ar as an internal reference gas.  Liquid samples 

were analyzed on another Varian 3900GC but with flame ionization detector (FID) and a CP-

PoraBOND Q (50 m x 0.32 mm x 5 µm) column. 

We found that MSN encapsulated RhNPs catalysts (MSNRhNPs) has higher activity 

(CO conversion) and better selectivity to C2 oxygenates than that of Rh-MSN made from 

impregnation methods in CO hydrogenation (Entry 1 and 2 in Table 1).  And these trends 

were kept very well at different reaction temperatures. Since catalytic activity comparison 

was based on assuming 100% dispersion for every catalyst, the difference of reactivity was 

most likely due to the difference between Rh particles sizes. After reaction at 573 K for 24 h, 

TEM images showed that the Rh particles on Rh-MSN (Figure 4a) from impregnation 

methods grew much faster and had a much broader particle distribution (Most of them were 

larger than 5.0 nm and some of them even were around 20 nm in diameter) compared to that 

of MSNRhNPs (Figure 4b) where most of RhNPs were still less than 5 nm in diameter. The 

larger Rh particle in Rh-MSN made CO and H2 accessible surface Rh atoms less than that in 

MSNRhNPs with smaller particle size.   The higher selectivity to C2 oxygenates of 
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MSNRhNPs might be related to both Rh particle size and the special interaction between 

MSN matrix and RhNPs, which is still under investigated in our lab.  

After being modified with promoter Mnn+, as shown in Table 1, MSNRhNPs-Mn had 

the highest selectivity (32.4 %) to ethanol and lowest selectivity (3.7 %) to methanol. And 

both MSNRhNPs-Mn and Rh-Mn-MSN have higher catalytic activities after being modified 

with Mnn+ than that of their unmodified counterparts MSNRhNPs and Rh-MSN respectively 

(Entry 3 and 4 in Table 1). That indicates that manganese oxides not only can improve the 

selectivity of Rh catalysts to C2 oxygenates but also can accelerate the CO hydrogenation.  In 

another words, Mnn+ not only help to tilt the adsorbed CO from Rh to Mn which is helpful to 

synthesize ethanol and acetaldehyde according to Bao et. al.,58 but also participate the 

hydrogenation of CO to HCO which was thought to be the rate limiting step in CO 

hydrogenation to ethanol according to the density functional theory.60 Although the 

mechanism of Mn effects on CO hydrogenation is still under investigation, it is clear that the 

close interaction between Rh and Mn is necessary for a better catalytic performance of Rh 

catalyst in CO hydrogenation, which was further proved by our catalytic tests over 

MSNRhNPsMn. 

As listed in Table 1 (Entry 4 and 5), the catalytic activity of MSNRhNPsMn was 

almost the same as that of MSNRhNPs-Mn, which is because the same RhNPs were used as 

the catalytic sites in both cases. Although the selectivities to gas product methane were close 

to each other for MSNRhNPsMn and MSNRhNPs-Mn, interestingly, the selectivity of 

MSNRhNPsMn to ethanol is much higher than that of MSNRhNPs-Mn as shown in Figure 5. 

Methanol, which usually is one of the main liquid by-products in CO hydrogenation, was 

kept at very low level through our tests when MSNRhNPsMn was used as catalyst. In the 
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mean time, CO2 production is under GC’s detection limitation even at 593 K for 

MSNRhNPsMn as well. These results indicate that the closer or stronger interaction between 

promoter Mn and catalytic site Rh is necessary to synthesize the ideal product C2 oxygenates 

such as ethanol and suppress the formation of by-product methanol. As shown in Figure 5, 

the selectivity of ethanol in tested temperature range from 523 K to 573 K reached its highest 

point and the selectivity of methane touched its lowest point although the CO conversion is 

only around 9.8 % which is lower than 24.2 % at 543 K. 

Conclusions 

In summary, we have designed a new Rh-based catalyst in which well-defined 

rhodium nanoparticles were distributed homogeneously through the whole mesoporous silica 

particle and could be easily modified by promoters during in situ of the formation of 

mesoporous silica. The resulting catalyst possesses a high surface area and narrow pore size 

distribution as normal MSN does. The new manganese modified rhodium catalyst could 

suppress the formation of by-product methanol efficiently therefore has very high selectivity 

to the ideal C2 oxygenates in CO hydrogenation. With the demonstrated better 

thermostability and better catalytic performance of MSN-encapsulated and Mn-modified 

rhodium nanoparticles, we defined a novel synthesis and modification method for metallic 

heterogeneous catalysts. 
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Tables and Figures 

Table 1. Catalytic data of Rh-based catalysts in CO hydrogenation* 
Selectivity (%) 

  
CO conversion 

(%) CH4 CO2 CH3OH C2 C2+ 

1 Rh-MSN 2.7 40.8 0 24.4 33.0 34.8 

2 MSNRhNPs 4.8 27.2 0 17.8 53.0 55.0 

3 Rh-Mn-MSN 13.7 63.0 1.6 3.8 24.3 31.6 

4 MSNRhNPs-Mn 20.2 47.0 2.5 3.7 42.2 46.8 

5 MSNRhNPsMn 24.2 51.2 0 0 40.3 48.8 

* All data were collected at the same conditions (0.3 g of catalyst with 3.0 g SiC, 300 

oC, 450 psi, 11 mL/min of CO, 22 mL/min of H2). 
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Figure 1-1. Synthesis of PVP-stabilized Rhodium Nanoparticles and the 

Subsequent Encapsulation of the RhodiumNanoparticle in the Framework of 

Mesoporous Silica Nanoparticles. 

 

Figure 1-2. Synthesis of MSNRhNPsMn by co-condensation of Mn(NO)2, 

RhNPs with TEOS.  
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(a)                                                                (b) 

Figure 2-2. TEM image (a) and STEM image (b) of MSNRhNPs. 

 

(a) (b) 
 

Figure 2-1. TEM image (a) and HRTEM image (b) of RhNPs. 
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Figure 3. XPS of RhNPs (a) and MSNRhNPs (b): before calcination, (c): 

after calcination, (d): after reaction. 
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Figure 4. TEM images of Rh-MSN (a) and MSNRhNPs (b) both after reaction 

at 300 oC for 24h. 
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Figure 5. Effect of temperature on CO hydrogenation catalyzed by 

MSNRhNPsMn. 
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CHAPTER 3.  ANIONIC SURFACTANT TEMPLATED MESOPOROUS 

CALCIUM SILICATE FOR TRANSESTERIFICATION REACTION OF 

TRIGLYCERIDE TO BIODIESEL 

One section of a paper that has been accepted by Topics in Catalysis, reorganized 
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Abstract 

Anionic surfactants are widely used for many industrial applications because of their 

environmental friendliness and low cost. We have developed a phosphoric acid monoester 

based anionic surfactant as the structure directing agent for the synthesis of a novel 

mesoporous calcium silicate material. The synthetic mechanism for the self-assembly was 

investigated, via S-M+I- route ( S-: surfactant, M+: metal ion, I-: silicate). N2 sorption analysis 

shows it has a high surface area. Other structure characterization was performed, such as 

XRD, TEM, EDS. Furthermore, the material is an excellent heterogeneous solid catalyst for 

transesterification reaction of soybean oil to biodiesel. Quantitative conversion can be 

achieved within 2 hours. It can be recycled 8 times without any decrease in reactivity. 

Keywords:  Mixed oxides, calcium silicate materials, heterogeneous catalysts, 

biodiesel, transesterification 
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Introduction 

Biodiesel, also known as Fatty Acid Methyl Esters (FAME), is one of the promising 

alternative biofuels that can be easily produced by a base-catalyzed transesterification 

reaction with triglycerides and methanol.1 Current industrial processes for biodiesel 

production are typically conducted by blending various oil feedstocks with methanol in the 

presence of sodium methoxide, sodium hydroxide, or potassium hydroxide as homogeneous 

catalysts.1 While these strong bases are effective in catalyzing the transesterifcation reaction 

of triglycerides and methanol giving rise to high yields of FAME and glycerol, the current 

method of removing these toxic and corrosive chemicals from the product mixtures often 

requires neutralization with acids, extensive water washing and drying after separation of 

glycerol.1 This tedious post-treatment process unavoidably raises the operational cost for 

biodiesel production and brings complication to the quality of FAME and glycerol.  Several 

undesired side products, such as soaps, and un-reacted strong bases and acids are often 

detected in the mixture of final products.  Up to 4 liters of water is needed for post-treating 

one litter of biodiesel produced from these homogeneous base-catalyzed reactions, and 

vacuum drying of the product at elevated temperature is usually needed after the washing 

process for removing residual water to ensure the desired self-life of FAME.   

We recently reported on the development of a series of mesoporous calcium silicate 

solid materials that could efficiently catalyze the transesterification reactions of various oils 

with methanol for producing high quality of biodiesel with excellent catalyst recyclability 

and reusability.2 The sysnthesis of those catalysts was based on the interaction of the 

positively charged CTAB binding to the hydrolyzed anionic silicates in aqueous solution, 

which is a crucial step for the formation of structurally ordered mesoporous silica materials, 
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such as MCM-41 silica.5,6 The major advantage of these solid catalysts is that no energy-

intensive post-treatments are needed.  Also, we demonstrated that the mesoporous calcium 

silicate family could work with soybean oil (SBO). While these catalysts could indeed 

facilitate the transesterification reaction under mild condition, i.e., refluxing methanol and 

atmospheric pressure, the reaction kinetics was not as fast as those of the homogeneous 

catalysts, such as sodium methoxide and sodium hydroxide. 

To replace the homogeneous catalysts in the current production processes of 

biodiesel, the reaction kinetics of tranesterification catalyzed by these solid mixed oxides 

would need to be further accelerated, while maintaining the cost-effectiveness and ease of 

preparation.  Herein, we report on the synthesis and characterization of anionic surfactant 

templated calcium silicate mixed oxide materials.  The catalytic performances of these 

materials for biodiesel production are also investigated.  As detailed in the following 

sections, we describe the fine-tuning of experimental variables for the synthesis of calcium 

silicate materials for significantly improving the reaction kinetics. 

Experimental 

1.1 Chemicals and Materials 

Calcium hydroxide Ca(OH)2, sodium hydroxide (NaOH), hydrogen chloride (HCl), 

methanol, and acetone were purchased and used as received from Fisher, Inc.  Solid sodium 

silicate powder was obtained from PQ Corporation. Tetraethylorthosilicate (TEOS), 

tetraethylene glycol, phosphorus oxychloride and 11-bromoundec-1-ene were purchased 

from Sigma-Aldrich.  Degummed soybean oil was obtained from West Central Co-op.   
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1.2  Deverlopment and Preparation of Phosphoric Acid Monoester-Directed 

Mesoporous Calcium Silicate (PMCS) catalysts 

In addition to tuning the synthetic condition for the calcium silicate mixed oxide 

materials, an anionic surfactant, phosphoric acid monoester (PME) surfactant, 3,6,9,12-

tetraoxatricos-22-enyl dihydrogen phosphate, was prepared according to the reported 

literature and used as the structure-directing agent for the synthesis of another series of 

mesoporous calcium silicate materials via the aforementioned co-condensation reaction.  In 

this case, PME served as the surfactant (S-) micelles templates, calcium (metal ion, M+) ions 

and then hydrolyzed TEOS (inorganic precursor, I-) coordinate accordingly, based upon 

electrostatic interactions, in the S-M+I- system 3, 4 The PME surfactant in 100 mL of water 

was heated to 80 °C.  The basicity of the PME solution was then adjusted to pH 11.5, 

followed by the addition of TEOS (1 mL).  Solid calcium hydroxide was then gradually 

added to the mixture.  The reaction was carried out at 80 °C for 1 h under vigorous stirring, 

followed by aging at 90 °C for 24 h.  The resulting solid product was collected by hot 

filtration and washed with copious amount of water and methanol.  The PME surfactant was 

removed by calcination at 600 °C for 6 h. 

1.3 Transesterification of soybean oil to biodiesel 

In order to correctly evaluate the catalytic ability of these calcium silicate materials, 

we followed the experiment procedures that were reported previously.2 The procedures for 

the transesterification of soybean oil are as follows.  The mixture of 200 mg of a dried solid 

catalyst and 24 mL of methanol was stirred for 20 min to uniformly disperse the particles.  

Soybean oil (1.0 g) was then added into the suspension of catalyst in methanol.  The reaction 

mixture was stirred at refluxing methanol temperature (64.7 °C) under atmospheric pressure.  
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After the complete conversion of oil to FAME was reached, the product mixture was filtered 

by a glass frit to separate the catalyst from the liquids.   

Methanol was evaporated under vacuum. CDCl3 was added to the remaining liquid 

for 1H NMR analysis.  The conversion percentage of transesterification reaction was 

analyzed by measuring the ratio of methyl protons (~3.6 ppm) to methylene hydrogens (α 

protons next to carbonyl group, 2.3 ppm). 

1.4 Material Characterization and Analysis 

Powder X-ray diffraction patterns of these PMCS materials were measured by 

Scintag Powder X-ray instrument.  Micromeritics ASAP and Tristar apparatuses were used 

for nitrogen sorption isotherms, BET, and BJH measurements.  Chemisorption of materials 

was measured using Micromeritics AutoChem II.  TEM micrographs were obtained by using 

Tecnai G2 F20 Transmission Electron Microscope.  

Results and Discussions 

2.1  Synthesis and Catalytic Properties of PMCS 

Anionic surfactants that can be self-assembled into micelles in water have been used 

as structure-directing templates for the synthesis of mesoporous silica materials.3, 9-13 In our 

study, positively charged calcium ions were introduced to interact with the phosphate groups 

of the anionic PME surfactant molecules as described previously.  Under basic conditions, 

hydrolyzed TEOS easily coordinates with the calcium/surfactant in a S-M+I- complex system 

and forms ordered structure.3 After the removal of surfactants, the calcium sites would be 

exposed to the surface and therefore could react with methanol and feedstock effectively.  

Table 3 summarized the different conditions for the preparation of PME-templated calcium 
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silicate mixed oxide catalysts (PMCS 1-9).  First, we synthesized materials (PMCS 1-3) by 

using lower amounts of calcium hydroxide under various pH conditions and they showed 

little or no catalytic reactivity for transesterification.   

We then increased the amounts of Ca(OH)2 gradually at pH 11.5, and the PMCS 

started to exhibit catalytic reactivity for transformation.  As shown in Figure 1, when the 

amount of calcium hydroxide was doubled, the PMCS-4 catalyzed transesterification of SBO 

to biodiesel could be completed in 10 h.  We further increased the amount of calcium, the 

reactivity was dramatically improved and only 2 h was needed to reach the 100% yield in the 

case of PMCS-5.  Interestingly, introducing more calcium hydroxide during the synthesis of 

material did not lead to any faster kinetics for biodiesel production.  Contrarily, it took more 

than 20 hours to complete the reaction when we further increased the amount of calcium 

(PMCS-6).  As stated previously, pH is an important factor for the synthesis of these mixed 

oxides.  In the case of PMCS materials, we found that catalysts (PMCS-5, 8, 9) exhibited 

almost identical reactivity (complete conversion of SBO to FAME within 2 h) when pH was 

set in the range between 10.3 and 12.2.  In contrast, the reactivity dropped rapidly and took 

10 h to complete the reaction when pH was lowered to 9 during material synthesis for 

PMCS-7. While calcium oxide alone has been examined as a catalyst for transesterification 

of triglycerides to biodiesel,7, 8  however, the high solubility in methanol makes this material a 

less attractive candidate for recyclable heterogeneous catalysis8.  All PMCS catalysts could 

be reused for 8 times with similar reactivity after regenerated by calcination at 600 oC for 6 h.  

PMCS collected by direct filtration and lypholization after reaction did not yield good 

recyclability (~50% yield at 2 h for the second cycle).  This could be attributed to the surface 

poisoning effect by reactant and/or product molecules.   
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Similar to previous literature reports on using the S-M+I- synthesis route,3 our PMCS 

catalysts are comprised of a lamellar type of porous structure.  Figure 2 (b) shows the low 

angle powder X-Ray diffraction patterns of the PMCS materials.  PMCS-3, which is with the 

lowest calcium loading, exhibited three strong peaks (d100, d200, and d300) that are 

characteristic of a well-ordered lamellar structure.  As the Ca/Si ratio went up, these patterns 

decreased and eventually gone as in the case of PMCS-6.  The X-Ray diffraction patterns at 

high angles of the PMCS-4, PMCS-5 and PMCS-6 catalysts possess peaks around 29~30° at 

2θ as shown in Figure 2 (a).  These peaks could be attributed to active calcium silicate 

catalyst layers, which were also observed in the previously reported mesoporous calcium 

silicate family.2, 14 In particular, sharp peaks at 29° were observed in PMCS-4 and 5, whereas 

a slightly shifted and broad peak was noticed in the case of PMCS-6. These results suggested 

that this peak at 29° is responsible for the high catalytic reactivity.  The difference in X-ray 

diffraction patterns correlate well with their catalytic reactivities, i.e., no peak at 29° could be 

observed in PMCS-3, which is a material that showed no reactivity for transesterification.  

Also, PMCS-3 and PMCS-4 both exhibited a peak at 26°, which could be attributed to the 

formation of hydroxyapatite, which is not resposible for the catalytic reactivity.  At the same 

time, PMCS catalysts showed no presence of characteristic peaks from calcium oxide, 

indicating that there are not discrete crystalline calcium oxide sites present, but a structure in 

which calcium is incorporated into the matrix of the material. As depicted in Figure 3, the 

nitrogen surface adsorption and desorption analysis of PMCS-5 revealed a type III 

mesostructure with a type H3 hysteresis15 further confirming a plate-like porous structure.  

The total surface area of the PMCS-5 catalyst is 150 m2/g.   

2.3  Chemisorption Properties of PMCS-5 Catalysts 
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The chemisorption measurement of the best catalyst (PMCS-5) is based on 

temperature-programmed-desorption (TPD) of surface-adsorbed pyridine on these catalysts.  

The results are summarized in Table 2.  Pyridine desorption PMCS-5 occurred at 175.2 °C.  

The pyridine amounts obtained from the corresponding TPD curve is 0.38 mmol/g for 

PMCS-5, while the reference material, 250 nm bare silica bead, showed no absorption of 

pyridine.  These results suggested that calcium silicate solid materials are more Lewis acidic 

than pure silica and are able to catalyze the esterification of free fatty acid to biodiesel as 

well. 2 

Conclusion 

We have demonstrated the synthesis and characterization of a new type of calcium 

silicate mixed oxide catalysts for the efficient transesterification of soybean oil to biodiesel 

with high recyclability. PMCS-5, which is mesoporous calcium silicate catalyst with a 

lamellar porous structure, could be easily prepared by using a phosphoric acid monoester 

surfactant as template. We demonstrated that this PMCS-5 material efficiently catalyzed the 

transesterification of soybean oil to biodiesel within 2 h.  This catalyst could be recycled and 

reused for 8 times after regeneration by calcination. Unlike the conventional sodium 

methoxide and hydroxide biodiesel catalysts that require neutralization and water washing, 

the heterogeneous nature of the recyclable calcium silicate mixed oxide catalysts that have 

been developed in this study can eliminate these tedious post-treatment processes. We 

believe that this research offers promising potential for significantly improving the current 

chemical process for biodiesel production.  
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Tables and Figures 

Table 1. PMCS Catalysts synthesized by using the phosphate monoester surfactant template. 

Entry 

No. 

PME  

(mg) 

Ca(OH)2  

(mg) 

TEOS  

(mL) 

H2O  

(mL) 

pH  

value 

PMCS-1 185 37 1 100 3.4 

PMCS-2 185 37 1 100 9.0 

PMCS-3 185 37 1 100 11.5 

PMCS-4 185 74 1 100 11.5 

PMCS-5 185 148 1 100 11.5 

PMCS-6 185 296 1 100 11.5 

PMCS-7 185 148 1 100 9.0 

PMCS-8 185 148 1 100 10.3 

PMCS-9 185 148 1 100 12.2 
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Table 2.  Chemisorption analysis of calcium silicate mixed oxide catalysts 

Material 

Pyridine absorbed  

(mmol/g) 

Peak temp 

(°C) 

Surface area  

(m2/g) 

Silica nanoparticles* No peak  NA 10 

PMCS-5 0.38501 175.2 150 

* Colloidal silica with an average particle diameter of 250 nm synthesized by Stober 

method 

** Pyridine adsorption at 120 °C.  TPD program: 10 °C/min heating ramp from 120 to 

600 °C, total duration for TPD is 2 h. 
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Figure 1.  Reaction kinetics of the transesterification of soybean oil to biodiesel by PMCS 

catalysts with different calcium oxide amounts.   
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(a) 

 

(b) 

Figure 2.  Powder X-ray diffraction patterns of PMCS catalysts at (a) low and (b) high angle.   
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Figure 3.  Nitrogen sorption isotherm of PMCS-5 catalyst. 
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Abstract 

Triethoxysilyl propylsuccinic acid grafted ceria nanoparticles (TESSA-CNPs) were 

synthesized with particle size of 4-5 nm, and covalently linked with mesoporous silica 

nanomaterials (MSNs). A cleavable disulfide bond was employed as a stimuli responsive 

controlled release system. The ceria nanoparticles (CNPs) can effectively cap the mesopores 

of MSN, while the loaded drug can be triggered release from the mesopores after the addition 

of disulfide reducing agent. CNP-MSNs showed better reactive oxygen species (ROS) 

suppression properties than naked CNPs. This property was pH dependent. When skin 

fibroblast cells were treated with CNP-MSN, it showed improved viability versus cells 

treated with CNPs, when both were treated with doxorubicin. We found CNP-MSN has 

much better endocytosis efficiency than CNPs. Interestingly, HeLa cells were not protected 

from doxorubicin induced toxicity by either CNP-MSN or CNPs.  

Introduction 

Controlled-release of drugs based on mesoporous silica nanoparticles (MSN) with 

high surface area and tunable pore size is of keen interest. Our group has demonstrated 
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previously that MSN can serve as a drug delivery vehicle.1-11 Drugs can be entrapped in the 

channel by multiple hard or soft caps. By introducing a drug release stimuli, it is possible to 

chemically cleave the bond between caps and MSN, or affect ligand exchange with the caps, 

drug release can be triggered from MSN. In 2003, we developed a CdS nanoparticles capped 

MSN as a stimuli-responsive controlled release system.1 The CdS nanoparticles were 

chemically linked with MSN surface blocking the mesopores. The disulfide linkage between 

the caps and MSN can be cleaved with disulfide reducing agents, thus triggering the release 

of loaded drugs from MSN. However, the toxicity of CdS nanoparticles limits the further 

applications in vivo.  

Cerium oxide nanoparticles have attracted various attentions in biological application 

recently.12-17 Due to the oxygen vacancies on the surface of cerium oxide, it consists of two 

oxidation state: +3 and +4, and can flip-flop between the two during redox reactions.18 It has 

been reported that ceria nanoparticles could inhibit the increase in the intracellular 

concentration of reactive oxygen species (ROS) of rat retina cell, and even prevent 

photoreceptor cell from light-induced degeneration in vivo.13 Ceria nanoparticles can even 

mimic the catalytic activity of superoxide dismutase.19 These activities come from the mixed 

oxidation state on ceria surface, and directly correlate with the ratio of Ce (+3) to Ce (+4). A 

higher concentration of Ce (+3) results in a better activity in superoxide scavenging 

process.15 Early studies showed that a decrease in particle size, an increase in surface area to 

volume ratio, gives rise to a larger surface oxygen vacancy.20 CNPs with particle size around 

5 nm is able to regenerate and act as a catalyst.13 However, other researchers found 

cytotoxicity and oxidative stress induced by cerium oxide with larger size (such as 20 nm) in 

cultured BEAS-2B cells21 and human lung cancer cells.22 Interestingly, researchers also 
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found a selective protection of normal cells by CNPs when treated with radiation or H2O2, 

but not to tumor cells.12,16 The different protection may come from the intra- and 

extracellular pH differences presented in normal versus tumors tissue due to metabolic 

activity. 12, 16 

In order to overcome CdS nanoparticle induced cytotoxicity, we studied ceria 

nanoparticles (CNPs) as the mesopore caps as well as an antioxidant to scavenge reactive 

oxygen species. In our study, we first synthesized TESSA coated ceria (TESSA-CNP) with 

particle size around 4-5 nm by sol-gel method, and then chemically linked with linker-MSN 

by amidation reaction (CNP-MSN).1 Dithiothreitol (DTT) was used to reduce the disulfide 

bond, breaking the connection of caps from MSN. At the first 2h, the release amount reached 

60% of the total release, and arrived at the plateau after 35 hours. Also, release concentration 

exhibited DTT concentration dependent. CNP-MSN exhibited pH-dependent antioxidant 

property when exposed to H2O2. Interestingly, it was shown to suppress ROS even more 

efficiently than naked cerium oxide. We even investigated the property in cultured skin 

fibroblast cell. We found CNP-MSN could attenuate doxorubicin induced toxicity, which is 

well known as an intracellular ROS producer as well as an antitumor antibiotic.  

Results and Discussion 

First, we made the thiol-functionalized MSN by co-condensation of tetraethyl 

orthosilicate (TEOS) and mercaptopropyl trimethoxysilane (MPTMS) via our previously 

reported method.23,24 After the removal of surfactant, we connected the 2-propyl-disulfanyl 

ethylamine to MSN through two-step thiol exchange reaction. At the same time, we made the 

TESSA grafted CNPs with particle size around 4-5 nm by sol-gel method modified from a 
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literature procedure.25 The mesopores of MSN was used to encapsulate aqueous drug 

solution, and the openings of the mesopores were capped by allowing the TESSA-CNPs 

covalently bonded with the amine group through amidation reaction.  

X-ray diffraction pattern of CNPs, Figure 15 (a) showed it crystallized in a fluorite 

structure. X-ray photoelectron analysis (Figure 15 (b)), verified that CNPs has both +3/+4 

oxidation states, which are necessary for the redox chemistry.19 Fourier transform infrared 

spectroscopy (Figure 16) further verified TESSA coated on ceria. The peak at 1710 cm-1 was 

indentified as the carboxylic carbonyl stretch from TESSA. Thermo gravimetric analysis 

(TGA, Figure 22) showed there was around 20% organic composite on CNPs. 

X-ray diffraction (Figure 20) at small angle showed that the functionalized MSN still 

preserved hexagonal mesostructure found in unfunctionalized MSN. After capping with 

TESSA-CNPs, the diffraction pattern disappeared, indicating the mesopores were blocked by 

the caps. Nitrogen sorption isotherms showed that Brunauer–Emmett–Teller (BET) surface 

area decreased from 920 m2/g to 320 m2/g. Also, pore size distribution calculated by Barrett-

Joyner-Halenda (BJH) method (Figure 21 (b)) showed the pores were blocked after capping. 

TGA (Figure 23) indicated the organic groups on MSN. Zeta potential (Table 1) 

measurement also verified the surface changes on MSN.  

 We investigated the stimuli responsive release by using fluorescein as a guest 

molecule. The total loading of fluorescein was found to be 11 µmol/g. Figure 1 (a) showed 

the triggered release profile. After a period of 24 h in PBS buffer solution (pH 7.4), the 

system exhibit less than 5% release, indicating a good capping efficiency. After the addition 

of DTT (18.5 mM) to the suspension, a release of entrapped fluorescein was triggered. After 
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35 hours, the release reached 100 % of the relative release. When compared to the loading 

amount, the total release is 34%. 

We also varied the concentration of DTT, and found the release amount is DTT 

concentration dependent (see Figure 1 (b)). The amount of release is controlled by the 

amount of caps that being cleaved by DTT.  

After demonstrating that CNP-MSN can serve as a controlled release system, we 

begin analyzing CNPs’ antioxidant property, in order to find out if it can reduce ROS 

concentration. The 2’,7’-dichlorfluorescein diacetate (H2DCF-DA) is a well-established 

compound to detect and quantify intracellular produced reactive oxygen species. In the 

presence of ROS, the non-fluorescent H2DCF-DA is oxidized to highly fluorescent DCF-DA 

(Figure 2). Herein, we used it as a probe to monitor the ROS generated by H2O2.  

Figure 3 (a) shows the fluorescence intensity of DCF-DA changes with time. When 

H2O2 was added, an increase in fluorescence was observed, as shown in the blue line. When 

CNPs were in the suspension with H2O2, the fluorescence intensity was lower than that of 

experiments without CNPs, shown in green line. Most interestingly, CNP-MSN showed even 

lower fluorescence intensity than tests with CNPs alone. Since the compound H2DCF-DA 

only turns fluorescence after being oxidized, the lower fluorescence intensity, the lower the 

ROS concentration. In other words, CNPs especially when linked with MSN, can effectively 

suppress the ROS generation induced by H2O2. 

Based on our observations, the TESSA-CNPs were difficult to disperse in the buffer 

solution. Once connected with MSN, the CNP-MSN composite was easier to suspend. The 

high surface area and porous structure of MSN could help CNPs a better dispersion.  As 

previously reported,20 the particle size of ceria still played a role in its antioxidant properties, 
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the smaller of the size, the more oxygen vacancies it has, and the better ROS suppression 

ability it has. We believe that a better suspenstion would help CNPs to remain in a smaller 

size, a larger contact possibility with the reactant, and a better ROS consumption ability.  

Basically, the mixture undergoes several reactions after the addition of H2O2 (see 

scheme below). The standard reduction potential of H2O2 / H2O is 1.78 eV, while Ce4+ / Ce3+ 

is 1.44 eV, indicating that H2O2 can act as the oxidizer and oxidize Ce3+ to Ce4+. At the same 

time, the standard reduction potential of HO2 / H2O2 is 1.5 eV, meaning that Ce4+ has the 

ability to turn back to Ce3+ by getting one electron. HO2 radical is thought to be of 

importance to convert Ce4+ back to Ce3+.26 However, in acidic condition, a higher 

concentration of protons may inhibit the reaction (2) to occur, thus H2O2 is likely to undergo 

half reaction (1).  

H2O2 + 2H+ +2e-
                2H2O   1.78 eV     (1) 

H2O2                HO2 + e- 
+ H+   -1.5 eV           (2) 

Ce4+ + e-
                Ce3+       1.44 eV                 (3) 

Perez et al. has reported the pH dependent antioxidant property of nanoceria.16 They 

observed that in acidic condition, Ce4+ remained at a higher concentration after the addition 

of H2O2 in 10 days. In contrast, Ce4+ were able to turn to its original concentration in neutral 

or basic condition. As expected, the fluorescence intensity of CNP-MSN and CNPs exhibited 

quite similar trend compared with the H2O2-only one (Figure 3 (b)). These results verified 

that higher proton concentration has a negative effect on CNPs’ capabilities as a ROS 
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scavenger. Furthermore, we found H2O2 induced H2DCF-DA oxidation was faster in acidic 

condition, which verified the half reaction (1) was favored when pH was low.  

In order to further compare the ROS consumption property of CNP-MSN with naked 

CNPs, we performed cell studies. First, we studied the cytotoxicity of both naked CNPs and 

CNP-MSN. Based on our previous study, MSN is nontoxic when concentration is below 100 

µg/ml. Cell viability and proliferation was tested by treating with a series of concentrations 

of CNPs and CNP-MSN. As is shown in Figure 4, the experimental data suggests that CNP-

MSN was biocompatible. When skin fibroblast and human cervix carcinoma cell (HeLa) was 

treated with CNP-MSN in concentrations from 10 to 30 µg/ml, a high viability as well as 

good proliferation was observed. Also, CNPs were not toxic in the concentration range from 

1 µg/ml to 3 µg/ml.  

Then we were trying to check the antioxidant property of CNP-MSN in cultured cells. 

Doxorubicin is a well known anticancer drug which has a large application in chemotherapy. 

The mechanism of DOX in cancer therapy is basically due to a high affinity in chelating and 

binding with DNA, interfering the cell division, and thus decreasing the cell proliferation in a 

large degree.27 However, it’s has been reported that DOX has some side effect to the normal 

tissue, such as cardiotoxicity, due to the production of reactive oxygen species (ROS) during 

its intracellular metabolism, which could be attenuated by antioxidant.28 

 Since DOX has a high affinity toward silica-based materials because of the 

electrostatic interaction, it’s really hard to get DOX release profile in physiological condition 

based on our CNP-MSN system. In order to demonstrate if the CNP-MSN system can 

prevent or decrease the toxicity to normal cells induced by DOX, we did the cell experiment 
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by simply suspending CNP-MSN in the DOX solution. The cells were treated with the 

mixture and incubated for 24 hours.  

Comparison of CNP-MSN and CNP was made based on the loading of CNP on MSN, 

which was quantified by ICP-MS. We did several experiments. First, we adjusted the 

concentration of the material, but kept the DOX solution at a certain level.  Then, we varied 

the DOX concentration from 2 µM to 10 µM. When DOX concentration is at 2 µM (Figure 

5) and 5 µM (Figure 6), respectively, we found the major effect of DOX was a sharp 

decrease in cell amount comparing with the untreated cells. While, the CNP-MSN treated 

cells exhibited better proliferation. After comparing with blank MSN, we suspect the 

behavior came from buffering effect of MSN. Due to the presence of MSN, there would have 

some changes in the intracellular DOX concentration, which later interfered the cell growth 

and cell amount. However, we didn’t see an obvious difference in the cell viability between 

the free DOX solution and the CNP-MSN treated cells. The viability of cells treated with free 

DOX showed 80 % survival, while the CNP-MSN treated cells had 5-10 % higher 

percentage. An explanation is, at these relative low concentrations of DOX, ROS generated is 

not so distinct, that the cytotoxicity induced by ROS is not clear to see, and so is the 

protection effect from CNP-MSN. When we kept increasing DOX concentration to 10 µM 

(Figure 7), MSN’s buffering effect was negligible, probably because the buffering has 

reached its limit. At this level, DOX was toxic enough and kill 70 % skin fibroblast cells. 

However, we found cell viability of the CNP-MSN treated cells was much higher than free 

DOX solution treated cells (Figure 7 (a)). And also this property is CNP-MSN concentration 

dependent.  The higher of the concentration, a better survival of the treated cells. Then we 

performed skin fibroblast endocytosis experiment. EC50 of CNP-MSN was around 1.5 µg/ml, 
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indicating a good uptake efficiency (Figure 9, 11(a)). At concentration of 10 µg/ml, nearly 90 

% of the cells have shown the fluorescence from FITC-labeled materials, while at 20 µg/ml, 

almost all the selected cells have the material.  The results well explained the concentration 

dependent antioxidant property of CNP-MSN when mixed with DOX solution. The higher 

concentration of the CNP-MSN introduced, the higher of the intracellular concentration of 

this material, and a better scavenging property against DOX. 

 We further compared the antioxidant property of CNP-MSN with naked CNP, 

keeping the DOX concentration at 10 µM (Figure 7 (b)). To our surprise, the naked CNP was 

not as efficient to protect the cells as the CNP-MSN, even though it still showed higher live 

cell percentage comparing with free DOX solution. In order to investigate how this could 

happen, we checked the endocytosis efficiency of naked CNP (Figure 9, 11(b)). As we 

expected, the EC50 of naked CNP showed at 10 µg/ml, indicating naked CNP was much less 

favored than CNP-MSN. Other researchers also reported that cells prefer to uptake larger 

particles than smaller particles. Limbach et al.29 studied the endocytosis of CNPs with a 

series of sizes by human lung fibroblast cells, and found larger ceria particles (250-500 nm) 

had better uptake efficiency than smaller particles (20-50 nm). Small nanoparticles 

underwent fast agglomeration upon contact to cell culture medium. The low density of the 

impaction-derived agglomerates reduced the ceria uptake per absorbed agglomerate, the 

diffusion coefficient, which contributed to a lower ceria uptake. However, larger 

nanoparticles with longer mean agglomeration time, could penetrate the cells more 

efficiently.  

Endocytosis experiment is a strong evidence to verify the different scavenging 

efficiency of CNP-MSN and naked CNP. When the cells were treated with naked CNP at 
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concentration from 1 to 3 µg/ml, cells that real uptake the CNP was around 10 % of the total, 

meaning that the rest cells may suffer from ROS and other toxicity induced by DOX. The 

results also indicate the CNP’s free radical scavenging process is inside the cells, and can 

only play a role when the CNP were uptake by the cells. 

According to our H2DCF-DA assay results, in acidic condition, CNP was unable to 

consume H2O2 and converted back to reduced oxidation state due to a high concentration of 

protons. As literature reported, ceria can preferentially protect the normal cells but not cancer 

cells which have an acidic micro-environment due to Warburg effect.16 We wanted to see if 

CNP-MSN still preserves this pH-dependent antioxidant property.  

We treated HeLa cells with a mixture of CNP-MSN and DOX solution. Figure 8 

showed there was no protection against the toxicity induced by DOX. Interestingly, we found 

the difference of endocytosis efficiency of CNP-MSN and CNP by HeLa cells is less obvious 

than skin fibroblast. Figure 10 and 12 showed the EC50 of CNP-MSN treated cells is around 

4 µg/ml, whereas 8 µg/ml for CNPs. Still, CNP-MSN has better ability to be uptake by HeLa 

than naked CNPs.  Based on our understanding, this different uptake efficiency of CNP-MSN 

does play a role in the preferential protection of skin fibroblast cell, whereas non-protection 

to HeLa. Also, the lower pH environment in cancer cells that negatively affect the 

regeneration of Ce (+3) can still contribute to the non-protection to HeLa. Since cell is a 

complex system, other factors such as differential intercellular activity, differences in 

chromatin structure or free-radical targets, result in the different protection efficiency in 

normal cell and cancer cell12. In order to visually investigate the endocytosis by the cells, 

fluorescence confocal microscopy measurement was employed. As Figure 13 and 14 shows, 
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the naked CNPs had the tendency to form aggregations, while CNP-MSN was better 

suspended.  

In summary, we successfully synthesized triethoxysilyl propylsuccinic acid grafted 

ceria nanoparticles linked-MSN, which can be served as a stimuli responsive drug delivery 

system as well as an efficient free radical scavenger. It showed pH dependent ROS 

consumption property. In particular, CNP-MSN showed a better function than naked CNPs 

when skin fibroblast cells were exposed to DOX. While, there was no protection to HeLa 

cells. 

Experimental 

Reagents and Materials.  Cerium (III) nitrate hexahydrate (99%), 3-

(mercaptopropyl) trimethoxysilane (MPTMS), 3-aminopropyltriethoxysilane (APTES), n-

cetyltrimethylammonium bromide (CTAB), tetraethylorthosilicate (TEOS), 2,2'-

dithiobispyridine, 2-aminoethanethiol hydrochloride,   N-hydroxysuccinimide (NHS),  1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), dithiothreitol (DTT), 3-

(triethoxysilyl) propylsuccinic anhydride (TESSA), fluorescein, 2,7-dichlorofluorescein 

diacetate, fluorescein isothiocyanate (FITC), doxorubicin hydrochloride (≥98.0 %), ammonia 

solution (28.0 %-30.0 %), were purchased from Sigma-Aldrich and used as received. 

Hydrogen peroxide solution (30 % w/w) was purchased from Fluka.  Nanopure water was 

prepared from a Barnstead E-pure water purification system.  

Synthesis of ceria nanoparticles (CNPs). The synthetic routes were modified from 

literature.25 0.5M Ce3+ solution was prepared by dissolving Ce(NO3)3.6H2O  in 

water/ethylene glycol 1:2 (v/v) co-solvent. Ammonia (30%) was diluted to 2M. Then 12 ml 
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diluted ammonium solution was added to the Ce3+ precursor solution under continuous 

stirring at room temperature. Immediately, brown yellow precipitate appeared. After stirring 

for 10 min, the precipitate was collected by centrifuge. And later washed with nanopure 

water three times and ethanol. Then the material was dried in lyophilizer.  

TESSA grafted on CNPs. 0.11 g CNPs were suspended in 30 mL toluene. The 

mixture was sonicated for 30 min, until there’s no big aggregation. Then TESSA 

(triethoxysilyl propylsuccinic anhydride) 0.13 mL (0.46 mmol) was added to the suspension. 

The temperature elevated to 110 oC, and kept reflux for 20 h. After centrifuge, the material 

was washed with methanol twice, and freeze drying.  

Synthesis of MCM-41 type mesoporous silica nanoparticles functionalized with 

2-(propyldisulfanyl) ethylamine (Linker-MSN). The synthetic methods were modified 

from our previous paper.1 First we synthesized the mercaptopropyl functionalized MSN by 

co-condensation of MPTMS and TEOS.23, 24 1 g CTAB (2.7×10-3 mol) was  dissolved in 

480mL nanopure water, 3.5 mL NaOH (2 M) solution was then added, adjusting the 

temperature to 80 oC. 5 mL TEOS (2.6×10-2 mol) with 0.98 ml mercaptopropyl 

trimethoxysilane (5.2×10-3 mol) was introduced to the surfactant solution, stirring for 2 h. 

The afforded white precipitate was the as synthesized thio-MSN.  After hot filtration, the 

material was washed with nanopure water and dried with methanol.  In order to wash the 

surfactant template, 1 g as-synthesized material was reflux with 6 ml HCl (12M) in 100 ml 

MeOH, 60 oC, for 6 h. The remaining solvent was removed by loading the material in high 

vacuum. Then 0.888 g thio-MSN was treated with 0.392 g 2,2'-dithiobispyridine (mole ratio 

1:2) in MeOH at room temperature under vigorous stirring for 24 h. The chemically 

accessible thiol group on MSN was calculated by UV absorption of the product (0.469 
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mmol/g). The product then underwent second thiol exchange reaction. The resulting MSN 

0.8713 g was then stirred with 93 mg 2-aminoethanethiol hydrochloride (mole ratio 1:2) in 

MeOH at room temperature for 24 h. The material then was filtered, washed with methanol 

and dried in air.  

Loading of fluorescein and capping with TESSA-CNPs on the mesopores. 50 mg 

MSN-linker was added in 10 ml 10-4 M fluorescein solution, sonicating for 20 min to get rid 

of air in the pores, and then incubated for 24 h. TESSA-CNPs 9.48 mg was suspended in 2ml 

10-4 M fluorescein solution, followed by adding 9.2 mg NHS (N-hydroxysuccinimide) and 

15.34 mg EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide). Then the above solution 

was added to the linker fluorescein solution. After stirring for 24 hours, the fluorescein 

loaded, TESSA-CNPs capped MSN was centrifuged, washed exclusively with nanopure 

water and dried in lyophilizer.  

DTT induced fluorescein release. 10 mg loaded MSN was suspended in 5 mL PBS 

buffer solution (pH 7.4), stirring at RT. Fluorescence was used to monitor the any leaching 

and release. After 24 hrs, DTT (18.5 mM) was added to cleave the chemical bond between 

MSN and CNPs. The release kinetic profile was monitored by fluorescence with excitation 

wavelength at 480 nm and emission wavelength at 514 nm. 

Reactive oxygen species measurement. Materials with different weight (the amount 

of CNPs used was based on the loading in CNP-MSN.  Herein, 10 mg CNP-MSN, while 1 

mg CNPs) were suspended in 10 ml buffer (pH 7.4 or pH 4), respectively, following the 

addition of 50 µL H2O2 (30 %). After 20 min incubation, 1 ml of the suspension was taken 

out and added to 10 ml H2DCF-DA solution (20 µM). Fluorescence was measured with 

excitation wavelength at 504 nm, and emission wavelength at 524 nm in 0.1 M Tris buffer. 
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Since 2’,7’-dichlorfluorescein diacetate can be oxidized and turned to fluorescent after being 

exposed in air , we prepared a H2DCF-DA solution without adding any oxidizer as a control.  

Cell culture. Skin fibroblast, HeLa cell lines were obtained from American Tissue 

Culture Collection (ATCC). Trypsin (1×, 0.25%) in 0.1 % EDTA-Na without calcium and 

magnesium was purchased from Fisher Scientific.  All the cells were maintained in T75 

flasks using the base medium DMEM (Dulbucco’s modified Eagle’s medium) supplemented 

with 2 mM l-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, and 1 mg/mL 

gentamycin. To make the complete growth medium, 10 % (v/v) fetal bovine serum was 

added for skin fibroblast cells culture, and 10 % (v/v) equine serum was added for HeLa 

cells. Subculture was performed every 3-5 days for skin fibroblast cell lines, and every 2-3 

days for  HeLa cells at a ratio of 1:3-1:8. All cell lines were maintained at 37 oC, 5 % CO2.  

 Cell viability and proliferation study. Cells were seeded in 6-well plates at the 

concentration of 1×105 cells/mL and were incubated for 48 h in standard culture medium at 

37 °C in 5 % CO2. After 48 hours, cells were incubated with a mixture of CNP-MSN and 

doxorubicin solution for 24 h.  To compare with CNPs and MSN, we suspended CNPs or 

MSN in doxorubicin solution, and treated to cells for 24 h. As a control experiment, the cells 

were incubated with standard growth medium without adding any material for another 24 h. 

The cytotoxicity of this material with different cell lines was evaluated by Guava ViaCount 

cytometry assay (Guava Technologies, Inc.; Hayward, CA). Cell viability was calculated as 

the percentage of material treated cells to the untreated. While, cell proliferation was 

calculated as a percentage of the total cell amount treated with materials to that of control 

cell. 



www.manaraa.com

 70 

 

Endocytosis efficiency measurement. CNP-MSN was labeled by directly stirred 

with 1mg/ml FITC (fluorescein isothiocyanate) DMF solution for 2 h at room temperature. 

CNPs endocytosis study was measured by reacting with APTES (3-

aminopropyltriethoxysilane) in toluene at 110 oC overnight firstly (mole ratio 1:1.5). After 

washed with methanol and dried in air, the afforded material was then stirred with 1mg/ml 

FITC DMF solution for 2 h. All the FITC labeled materials were washed extensively with 

methanol and dried in high vacuum at 100 oC to get rid of the organic solvent. Cells at a 

concentration of 1×105 cells/mL were grown in 6-well plates for 48 h at 37 °C in 5 % CO2. 

The cells were then treated with FITC-CNP-MSN and FITC-CNP which were suspended in 

serum-free media for 12 h at 37 °C in 5% CO2. Then the cells were washed once with PBS 

and trypsinized. The cells were incubated in 830 mM trypan blue for 10 min to quench the 

fluorescence of any MSN nanoparticles adhered to the exterior of the cells. The cellular 

uptake was measured by flow cytometry. 

Confocal fluorescence microscopy measurement. Skin fibroblast and HeLa cells 

were seeded at the density of 1 × 105 cells per well in 6 well plates in 3 mL D-10 medium 

with coverslips at the bottom of the wells. For HeLa cells, after 36 h, the D-10 medium was 

replaced by 3 mL of material (10 µg/mL) in the serum-free DMEM medium for 10 h. For 

Skin fibroblast cells, after 60 h, the growth medium was changed by the material suspension 

medium. Afterwards, the medium was removed, the cells were washed with PBS (2×), and 

the cells were then reincubated with a PBS solution of 3.7 % formaldehyde and 57.0 mM 

4,6-Diamidino-2-phenylindole dihydrochloride (DAPI) for 30 min. These coverslips were 

removed from the PBS solution and fixed to glass slides with liquid adhesive. The DAPI-

stained coverslips were placed in microscope slides and examined under a Leica TCS NT 
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confocal fluorescence microscope system using a 100x oil immersion objective. As depicted 

in Figure 13 and 14, the blue fluorescent, DAPI-stained nuclei (right images) were observed 

by exciting the cells with a UV laser at wavelengths from 340 to 458 nm, while the green 

fluorescent FITC-CNP-MSN and FITC-CNP particles which inside cells were visualized by 

excitation at 488 nm with an Argon Laser. The phase contrast images of the cells were 

obtained with a 568 nm Krypton laser. 

Instrumental method and characterization. X-ray diffraction patterns were 

collected from Rigaku ultima IV X-ray diffractometer using Cu Kα radiation. Nitrogen 

adsorption/desorption isotherm were measured by a Micromeritics Tristar 3000 sorptometer. 

The surface areas and pore size distributions were calculated by the Brunauer–Emmett–

Teller (BET) and Barrett-Joyner-Halenda (BJH) method. The TEM examination was 

completed on a Tecnai G2 F20 and Philips CM 30 electron microscope operated at 200 kV. 

X-ray photoelectron spectroscopy were obtained from a Perkin-Elmer PHI 5500 XPS 

spectrometer with a hemispherical energy analyzer in an ion-pumped chamber (evacuated to 

2 x 10-9 Torr), and a Al Kα (BE = 1486.6 eV) X-ray source at 250 W with 15 kV acceleration 

voltage. Peaks were assigned by using Ce3d3/2 at 916 eV as charge compensation. The ζ -

potential was measured in a Malvern Nano HT Zetasizer. Materials were dispersed with a 

concentration of 500 µg/ml in PBS buffer (pH 7.4, 10mM). Fluorescent intensity was 

obtained from FluoroMax-2. For fluorescein release, the excitation wavelength was at 480 

nm and emission wavelength at 514 nm. For H2DCF-DA on ROS measurement, the 

excitation wavelength was at 504 nm and emission wavelength at 524 nm. 

Thermogravimetric analysis was carried out on auto TGA 2950HR V5.7A thermal analyzer 

with a heating rate of 2˚C/min. Fourier transform infrared spectroscopy was measured by 
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Necolet Nexus 470 FTIR. ICP-MS was employed to determine the loading of cerium on 

MSN. The measurement was carried out on Agilent HP 4500. The calibration curve was 

prepared by measuring the standard solution with concentration from 20 ppm to 150 ppm. 

CNP-MSN 11.5 mg was dissolved in hydrofluoric acid (48 wt.%), and diluted to 100 ml. The 

loading of ceria on MSN is 92.2 µg/mg (Figure 19).  
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Tables and Figures 

Table 1. Zeta potential, surface area, and pore volume of SH-MSN, linker-MSN, CNPs and 

CNP-MSN.  

Materials Zeta potential (mV) BET surface area (m2/g) BJH pore volume (cm3/g) 

SH-MSN -14.4 972 0.9 

Linker-MSN -2.33 918 0.8 

CNPs -43.1 - - 

CNP-MSN -5.49 325 < 0.2 
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(a) 

 

(b) 

Figure 1. DTT induced controlled release curve of fluorescein loaded, TESSA-CNP capped 

MSN (a); total released fluorescein concentration vs. DTT concentration (b). 
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Figure 2. 2’,7’-dichlorofluorescein diacetate (H2DCF-DA) is oxidized to highly fluorescent 

DCF-DA by H2O2. 
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(a) 

 
 
 

 
(b) 

 
Figure 3. Fluorescence intensity curve vs. time at pH 7.4 (a) and pH 4 (b). Positive control is 

denoted as 0, whereas negative control is labeled as Control.  
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Figure 4. Viability and proliferation of skin fibroblast cell and HeLa cell under the treatment 

of CNP-MSN and CNPs with different concentrations for 24h.  
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Figure 5. Viability and proliferation of skin fibroblast cells after treated with the mixture of 

CNP-MSN and 2 µM doxorubicin for 24 h. MSN was used as comparison.  
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Figure 6. Viability and proliferation of skin fibroblast cells after treated with the mixture of 

CNP-MSN and 5 µM doxorubicin for 24h. MSN was used as comparison. 
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(a) 

 

(b) 

Figure 7. Viability and proliferation of skin fibroblast cells after treated with the mixture of 

10 µM doxorubicin and CNP-MSN (a) and CNPs (b) for 24h.  
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Figure 8. Viability and proliferation of HeLa cells after treated with the mixture of 10 µM 

doxorubicin with CNP-MSN and CNPs for 24h. 
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Figure 9. Endocytosis efficiency of CNP-MSN and CNPs under different concentrations by 

skin fibroblast cells. 
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Figure 10. Endocytosis efficiency of CNP-MSN and CNPs under different concentrations by 

HeLa cells. 
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(a) 

 

(b) 

Figure 11. Fluorescence histograms of skin fibroblast cells after treated with FITC-labeled 

materials (a) CNP-MSN, EC50 ~1.5 µg/ml; (b) CNP, EC50 ~10 µg/ml. Representative results 

of three independent experiments. 
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(a) 

 

(b) 

Figure 12. Fluorescence histograms of HeLa cells after treated with FITC-labeled materials 

(a) CNP-MSN, EC50 ~ 4 µg/ml; (b) CNP, EC50 ~ 8 µg/ml. Representative results of three 

independent experiments. 
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Figure 13. Fluorescence confocal micrographs of skin fibroblast cells internalized with 10 

µg/ml FICT labeled (green) CNP-MSN (c), CNP (g); Stained with nuclei dye DAPI (blue) (b) 

and (f); (a) and (e) are Differential Interference Contrast (DIC) micrograph. The merged 

micrograph are shown in (d) and (h).  
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Figure 14. Fluorescence confocal micrographs of HeLa cells internalized with 10 µg/ml 

FICT labeled (green) CNP-MSN (c), CNP (g); Stained with nuclei dye DAPI (blue) (b) and 

(f); (a) and (e) are Differential Interference Contrast (DIC) micrograph. The merged 

micrograph are shown in (d) and (h).  



www.manaraa.com

 90 

 

 

(a) 
 
 

 
 

(b) 
 

Figure 15. X-ray diffraction of CNP (a); X-ray photoelectron spectroscopy of CNP vs. bulk 

cerium oxide (b).  
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Figure 16. Fourier transform Infrared Spectroscopy of TESSA grafted CNP.  
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(a) 

 

(b) 

Figure 17. Transmission electron microscopy of (a) CNPs; (b) CNP-MSN. 
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Figure 18. Scanning electron microscopy of linker-MSN 
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Figure 19.  ICP-MS calibration curve of Ce3+ concentration vs. intensity. 
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Figure 20. X-ray diffraction of linker-MSN and CNP-MSN. 
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(a) 

 

(b) 

Figure 21.  Nitrogen ad/desorption isotherm of linker-MSN and CNP-MSN by Brunauer–

Emmett–Teller (BET) method (a) and pore size distribution by Barrett-Joyner-Halenda (BJH) 

method (b). 
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(a) 

 

(b) 

Figure 22. Weight loss of TESSA-CNP (a) and CNP (b) by TGA. 
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(a) 

 

(b) 

Figure 23. Weight loss of Linker-MSN (a) and blank MSN (b) by TGA. 
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CHAPTER 5.  GENERAL CONCLUSIONS 

Mesoporous silica nanoparticles (MSN) have been extensively studied due to its 

unique characteristics, such as high surface area, ordered pore structure, large pore volume, 

tunable pore size and biocompatibility. With the efforts in Dr. Victor Lin’s group, these 

applications were involved in supports for noble metal particles in catalysis, vehicles for 

controlled release and intracellular drug delivery. 

The synthesis of ethanol selectively from syngas (CO and H2), which can be made 

from coal or biomass pyrolysis, has been a topic of growing interests from both industrial and 

academic points of views. Among many candidates, Rhodium based catalysts have been 

known for decades for an excellent selectivity in C2+ oxygenates, including ethanol, due to 

the unique CO adsorption behavior on Rh surface. However, the size control of Rh particles 

and migration and growth in high temperature process, problematically decrease the 

reactivity in a large degree. In our study, we successfully synthesized well-defined Rh 

particles with 2 nm size in alcoholic solution using polyvinylpyrrolidone (PVP), as a 

nanoparticle stabilizer, and subsequent encapsulated the as-made Rh nanoparticles in the 

framework of MSN during in situ precipitation. After further modified by manganese oxide, 

the material showed much higher selectivity as well as conversion comparing to the 

commercial Rhodium based catalysts. Even though the in situ encapsulation methods has 

been reported recently, there are still a large potential to study, such as a more sophisticated  

synthetic way, loading of new metallic or metal oxide nanoparticles in the application of 

other catalytic process.   
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We synthesized a series of mesoporous calcium silicate materials by applying an 

anionic surfactant (PME) as the structure directing agent. In our study, positively charged 

calcium ions were introduced to interact with the phosphate groups of the anionic PME 

surfactant molecules. Under basic conditions, hydrolyzed TEOS easily coordinates with the 

calcium/surfactant in a S-M+I- complex system and forms ordered structure.  After the 

removal of surfactants, the calcium sites would be exposed to the surface and be accessible to 

the reactants. By adjusting the synthetic parameters, such as two inorganic precursors mole 

ratio, concentration, pH, we successfully made the highly reactive catalysts for 

transesterification reaction from soybean oil to biodiesel. The best catalyst can achieve a 

quantitative yield in less than two hours, which is quite competitive to the commercially used 

homogenous catalysts. Furthermore, the catalysts can be recycled several times. The strategy 

of using anionic surfactant to template mesoporous calcium silicate is a brand new method in 

heterogeneous catalysts for biodiesel production, which would even further a new generation 

of catalysts.  

The controlled-release of “hard-cap” facilitated system is also investigated. Ceria 

nanoparticles (CNPs) have attracted many attentions in the biomedical field recently, due to 

the redox chemistry on its surface. We studied CNPs as antioxidant as well as the mesopore 

caps to scavenge reactive oxygen species. The functionalized MSN with disulfanyl 

ethylamine group can covalently linked with succinic acid grafted ceria nanoparticles. While 

the disulfide bond can be cleaved by disulfide reducing agent (DTT), which regulates the 

removing of ceria caps.  It shows a good controlled release system. Also, the system 

performed pH-dependent antioxidant property when exposed to H2O2, and even showed to 

suppress ROS more efficiently than naked CNPs. After comparing the endocytosis 
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efficiency, we found MSN could facilitate and help the uptake of CNPs by skin fibroblast 

cells. CNP-MSN showed nearly ten times higher efficiency than naked CNPs. We suspected 

the porous structure of MSN played a big role in the process, whereas the mechanism is still 

under investigation. The antioxidant and free radical scavenging property of CNPs would 

obtain further interest, which is related to functionalization and targeting.  

In addition to the applications of MSN we discussed above, there are other 

applications which have been or will be studied in the next few years, such as absorbents, 

sensors, templates and molecular sieves. All these applications are associated with 

functionalization on the surface, tuning the pore size and morphology control. 

101 


	2010
	Mesoporous metal oxide materials for catalysis and biotechnology applications
	Enruo Guo
	Recommended Citation


	Enruo thesis 412

